Abstract Submitted
for the DAMOP17 Meeting of
The American Physical Society

Testing the Rotation Stage in the ARIADNE Axion Experiment¹

JORDAN DARGERT, CHLOE LOHMEYER, MINDY HARKNESS, MARK CUNNINGHAM, University of Nevada, Reno, HARRY FOSBINDER-ELKINS, Princeton University, ANDREW GERACI, University of Nevada, Reno, ARIADNE COLLABORATION — The Axion Resonant InterAction Detection Experiment (ARIADNE) will search for the Peccei-Quinn (PQ) axion, a hypothetical particle that is a dark matter candidate. Using a new technique based on Nuclear Magnetic Resonance, this new method can probe well into the allowed PQ axion mass range [1]. Additionally, it does not rely on cosmological assumptions, meaning that the PQ Axion would be sourced locally. Our project relies on the stability of a rotating segmented source mass and superconducting magnetic shielding. Superconducting shielding is essential for limiting magnetic noise, thus allowing a feasible level of sensitivity required for PQ Axion detection. Progress on testing the stability of the rotary mechanism will be reported, and the design for the superconducting shielding in the experiment will be discussed, along with plans for moving the experiment forward. [1] A. Arvanitaki and A. Geraci, Phys. Rev. Lett. 113, 161801 (2014)

¹NSF grant # PHY-1509176

Jordan Dargert
University of Nevada, Reno

Date submitted: 06 Apr 2017

Electronic form version 1.4