Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Hyperfine quenching of the $2s^22p^53s$ 3P_2 state of Ne-like ions¹ U. I. SAFRONOVA, A. STAFFORD , A. S. SAFRONOVA, University of Nevada, Reno — The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the $2s^22p^53s$ $3P_2$ state in Ne-like ions. In particular, the 3P_2 excited state decays to the 1S_0 ground state by M2 emission, while both 1P_1 and 3P_1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P_1 and 1P_1 states into the 3P_2 state, resulting in an increase of the 3P_2 transition rate and a corresponding reduction of the 3P_2 lifetime. We consider 22 Ne like ions with Z = 14 - 94 and nuclear moment I = 1/2. We found that the largess hyperfine quenching contribution by a factor of 2 are for Ne-like ${}^{31}P$ and 203 Tl. The smallest (less than 1%) induced contribution are the following Nelike ions: 57 Fe, 107 Ag, 109 Ag, 183 W, and 187 Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered.

¹This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.

Ulyana Safronova University of Nevada, Reno

Date submitted: 26 Jan 2017

Electronic form version 1.4