Hyperfine quenching of the $2s^22p^53s\ ^3P_2$ state of Ne-like ions1 U. I. SAFRONOVA, A. STAFFORD, A. S. SAFRONOVA, University of Nevada, Reno

— The many-body perturbation theory (RMBPT) is used to calculate energies and multipole matrix elements to evaluate hyperfine quenching of the $2s^22p^53s\ ^3P_2$ state in Ne-like ions. In particular, the 3P_2 excited state decays to the 1S_0 ground state by M2 emission, while both 1P_1 and 3P_1 states decay to the ground-state by E1 emission, which is substantially faster. For odd-A nuclei, the hyperfine interaction induces admixtures of 3P_1 and 1P_1 states into the 3P_2 state, resulting in an increase of the 3P_2 transition rate and a corresponding reduction of the 3P_2 lifetime. We consider 22 Ne like ions with $Z = 14$ - 94 and nuclear moment $I = 1/2$. We found that the largest hyperfine quenching contribution by a factor of 2 are for Ne-like ^{31}P and ^{203}Tl. The smallest (less than 1%) induced contribution are the following Ne-like ions: ^{57}Fe, ^{107}Ag, ^{109}Ag, ^{183}W, and ^{187}Os ions. For another 15 Ne-like ions the hyperfine quenching contribution is between 15% and 35%. Applications to x-ray line polarization of Ne-like lines is considered.

1This work is supported by the Department of Energy, National Nuclear Security Administration, under Award Number DE-NA0002954.