Sympathetic Cooling of Quantum Simulators

MEGHANA RAGHUNANDAN, HENDRIK WEIMER, Institut fur Theoretische Physik, Leibniz Universitat Hannover — We discuss the possibility of maximizing the cooling of a quantum simulator by controlling the system-environment coupling such that the system is driven into the ground state. We make use of various analytical tools such as effective operator formalism and the quantum master equations to exactly solve the model of an Ising spin chain consisting of N particles coupled to a radiation field. We maximize the cooling by finding the dependence of the effective rate of transitions of the various excited states into the ground state. We show that by adding a single dissipative qubit, we already get quite substantial cooling rates.

1 Volkswagen Foundation, DFG
2 F. Reiter et al, Phys. Rev. A 85, 032111 161, 1500

Meghana Raghunandan
Institut fur Theoretische Physik, Leibniz Universitat Hannover

Date submitted: 26 Jan 2017