Streaked photoemission from polycrystalline gold1 MARCELO AMBROSIO, UWE THUMM, Kansas State University — We present and analyze IR streaked photoemission spectra[1] from a polycrystalline gold surface for XUV photon energies of 20 and 93 eV. We compare simulated spectra representing the valence electronic structure of the surface in either jellium approximation or based on LDA calculations[2] for IR pulses with 10^{10} and 10^{11} Watt/cm2 intensity. Our simulated spectra depend strongly on the IR skin depth and assumed reflection mode (perfect absorption, perfect transmission, perfect reflection, and Fresnel reflection). [1] Q. Liao and U. Thumm, Phys. Rev. A 92, 031401 (2015). [2] E. Chulkov, V. Silkin, and P. Echenique, Surf. Sci. 437, 330 (1999).

1Supported by the US NSF and the Division of Chemical Sciences, Office of the Basic Energy Sciences, Office of Energy Research, US DoE.