DAMOP17-2017-000335

Abstract for an Invited Paper for the DAMOP17 Meeting of the American Physical Society

Quantum Stat Mech in a Programmable Spin Chain of Trapped Ions¹ CHRISTOPHER MONROE, JQI and University of Maryland

Trapped atomic ions are a versatile and very clean platform for the quantum programming of interacting spin models and the study of quantum nonequilibrium phenomena. When spin-dependent optical dipole forces are applied to a collection of trapped ions, an effective long-range quantum magnetic interaction arises, with reconfigurable and tunable graphs. Following earlier work on many-body spectroscopy² and quench dynamics³, we have recently studied many body non-thermalization processes in this system. Frustrated Hamiltonian dynamics can lead to prethermalization⁴, and by adding programmable disorder between the sites, we have observed the phenomenon of many body localization (MBL)⁵. Finally, by applying a periodically driven Floquet Hamiltonian tempered by MBL, we report the observation of a discrete "time crystal in the stable appearance of a subharmonic response of the system to the periodic drive⁶

¹This work is supported by the ARO Atomic Physics Program, the AFOSR MURI on Quantum Measurement and Verification, the IARPA LogiQ Program, and the NSF Physics Frontier Center at JQI.

²C. Senko, et al., **Science 345**, 430 (2014).

³P. Richerme, et al., **Nature 511**, 198 (2014).

⁴B. Neyenhuis, et al., **arXiv 1608.00681** (2016).

⁵J. Smith, et al., **Nature Physics 12**, 907 (2016).

⁶J. Zhang, et al., **arXiv 1609.08684** (2016).