Quench-induced resonant tunneling mechanisms of bosons in an optical lattice with harmonic confinement1 SIMEON MISTAKIDIS, GEORGIOS KOUTENTAKIS, PETER SCHMELCHER, Center for Optical Quantum Technologies, University of Hamburg, THEORY GROUP OF FUNDAMENTAL PROCESSES IN QUANTUM PHYSICS TEAM — The non-equilibrium dynamics of small boson ensembles in one-dimensional optical lattices is explored upon a sudden quench of an additional harmonic trap from strong to weak confinement. We find that the competition between the initial localization and the repulsive interaction leads to a resonant response of the system for intermediate quench amplitudes, corresponding to avoided crossings in the many-body eigenspectrum with varying final trap frequency. In particular, we show that these avoided crossings can be utilized to prepare the system in a desired state. The dynamical response is shown to depend on both the interaction strength as well as the number of atoms manifesting the many-body nature of the tunneling dynamics.

1Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 "Light induced dynamics and control of correlated quantum systems"