Precise measurements on a quantum phase transition in antiferromagnetic spinor Bose-Einstein condensates

CHANDRA RAMAN, ANSHUMAN VINIT, School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA — We have experimentally investigated the quench dynamics of antiferromagnetic spinor Bose-Einstein condensates in the vicinity of a zero temperature quantum phase transition at zero quadratic Zeeman shift q. A key feature of this work was removal of magnetic field inhomogeneities, resulting in a steep change in behavior near the transition point. The quadratic Zeeman shift at the transition point was resolved to 250 mHz uncertainty, equivalent to an energy resolution of $k_B \times 12$ picoKelvin. To our knowledge, this is the first demonstration of sub-Hz precision measurement of a phase transition in quantum gases. It paves the way toward observing shifts of the transition point due to finite particle number N that scale as $1/N$, and also, to potential Heisenberg limited spectroscopy with antiferromagnetic spinor gases.

1This work was supported by NSF grant No. 1100179

Chandra Raman
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA

Date submitted: 27 Jan 2017

Electronic form version 1.4