Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Transverse spin relaxation of rubidium atoms in solid parahydrogen¹ SUNIL UPADHYAY, JONATHAN WEINSTEIN, University of Nevada, Reno — We grow parahydrogen matrices doped with rubidium atoms at densities on the order of 10^{17} cm⁻³. We prepare the atomic spin state of the implanted rubidium atoms with optical pumping, and measure the spin state with optical spectroscopy. The combination of high atomic densities and optical addressability make this a promising experimental platform for applications such as magnetometry. We measure T_2^* and T_2 times for this system using free-induction decay and spin-echo techniques, and observe a strong dependence of T_2 on the density of orthohydrogen impurities in the parahydrogen matrix.

 $^1\mathrm{This}$ material is based upon work supported by The National Science Foundation under Grant # PHY 1607072

Jonathan Weinstein University of Nevada, Reno

Date submitted: 06 Apr 2017

Electronic form version 1.4