Measurement of hyperfine structure and isotope shifts in the
$8p$ excited states of thallium and the $7p$ excited states of indium using two-step laser spectroscopy

P. MILINDA RUPASINGHE, SAUMAN CHENG, NATHANIEL VILAS, ELI HOENIG, BINGYI WANG, P.K. MAJUMDER, Williams College — Using a two-color, two-step vapor cell spectroscopy technique we have completed measurements of hyperfine splittings of $8p$ states in 205Tl and 203Tl, as well as the $7s - 8p$ transition isotope shifts. The same experimental scheme has been used to measure the hyperfine splitting of the 115In $7p_{1/2}$ state and the hyperfine a, b, c constants within the $7p_{3/2}$ state. An external-cavity diode laser locked to the 1st step transition excites atoms to an intermediate state and a second, red laser diode overlaps the first within a heated atomic vapor cell in both a co-propagating and counter-propagating configuration. Analysis of subsequent Doppler-free absorption spectra of the second-step transitions ($7s_{1/2} \rightarrow 8p_{1/2,3/2}$ in thallium and $6s_{1/2} \rightarrow 7p_{1/2,3/2}$ in indium) allows us to extract both hyperfine and isotope shift information with uncertainties well below 1 MHz. Frequency modulation of the red laser provides convenient in situ frequency calibration. For the case of thallium 205Tl $8p_{3/2}$ state hyperfine splitting, our results disagree with older measurements and show a well-resolved hyperfine anomaly not previously observed for this state.

Work supported by NSF grant #1404206

Protik Majumder
Williams College

Date submitted: 06 Apr 2017