Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Photoionization of atomic chlorine near the K-edge Z. FELFLI, Clark Atlanta University, S. T. MANSON, Georgia State University, A. Z. MSEZANE, Clark Atlanta University — The photoionization cross section for atomic Cl in the vicinity of the 1s threshold has been investigated using R-matrix methodology. Specifically, the resonances leading up to the first two 1s ionization thresholds, the $1s2s^22p^63s^23p^5$ ^{3,1}P states of Cl⁺, have been examined in detail. In addition to the $1s2s^22p^63s^23p^6$ ²S resonance, which arises from a $1s \rightarrow 3p$ transition that is possible owing to the open shell nature of the Cl atom, there are six resonances series leading up to the two thresholds: {1s2s²2p⁶3s²3p⁵ ^{3,1}P}np²S, ²P, ²D. The results show that the $1s \rightarrow 3p$ resonances is by far the strongest, as might be expected, and the energy and shape are in rather good agreement with experiment [1]. Furthermore, this lowest ²S resonance "robs" oscillator strength from the resonances of the {1s2s²2p⁶3s²3p⁵ ³P}np ²S series, which are very much weaker than their ²P and ²D counterparts: there is no $1s \rightarrow 3p$ resonance in the ²P and ²D manifolds. The next strongest resonances are the six $1s \rightarrow 4p$ excitations. Each pair ²S, ²P and ²D n=4 resonances interact so that their separation is not the splitting of the ${}^{3}P$ and ¹P 1s ionization thresholds, and their quantum defects are very much larger than the asymptotic values and for the n=4, they are about 1.6 for the ²P and ²D while for the ${}^{2}S$ they are about 1.8, reflecting the fact that the n=4 ${}^{2}S$ resonances are also strongly affected by the $1s3p^6$ resonance; the higher resonances in all series exhibit quantum defects of about 0.9. [1] W. C. Stolte, et al, Phys. Rev. A 88, 053425 (2013). Work supported by U.S. DOE.

> Z. Felfli Clark Atlanta University

Date submitted: 27 Jan 2017

Electronic form version 1.4