Implementation of in-vacuum electrodes for manipulating interactions between ultracold KRb molecules

KYLE MATSUDA, JACOB COVEY, LUIGI DE MARCO, WILLIAM TOBIAS, GIACOMO VALTOLINA, JUN YE, JILA, National Institute of Standards and Technology and University of Colorado — Ultracold molecules represent an ideal platform for studying many-body physics with long-range dipolar interactions. The field of ultracold polar molecules has recently made enormous progress and many different bi-alkali molecules have been produced in their ground state. Recently, dipolar spin-exchange interactions and many-body dynamics have been observed with Fermionic KRb molecules in an optical lattice, and low-entropy samples in a lattice have been realized. However, the ability to apply large electric fields to polarize the molecules has been limited to several kV/cm. Additionally, high resolution in situ has been lacking for polar molecules despite the enormous progress in the quantum gas field. We present a new apparatus for producing Fermionic KRb molecules where stable, homogeneous electric fields in the range of 30 kV/cm are expected, while also accommodating arbitrary gradients in two dimensions. This apparatus is designed for high resolution addressing and detection, and imaging resolutions well below 1 micron are expected. We present details on this apparatus and its construction, and describe the procedure used to produce ultracold gases of atoms and molecules. Further work will lead to high resolution detection of strongly dipolar quantum systems.

Kyle Matsuda
JILA, NIST and University of Colorado