Spectral Resolution of Resonant Positron-Molecule Annihilation due to Multimodes.1 J. R. DANIELSON, M. R. NATISIN, C. M. SURKO, University of California, San Diego — The annihilation spectra of positrons on molecules, as a function of incident positron energy, are typically dominated by relatively sharp features that have been identified as vibrational Feshbach resonances (VFR) mediated by fundamental vibrations.2 The theory of Gribakin and Lee is successful in describing the annihilation spectra for selected small molecules where the annihilation is dominated by a small number of dipole-allowed modes.3 However, in most molecules, these sharp peaks ride on a broad background of enhanced annihilation. There is indirect evidence that this effect is due to a dense set of combination and overtone resonances.4 An extension of the Gribakin-Lee theory can be used to describe VFR’s due to these multimodes, where the important effect of multiple decay channels is also included. Prospects for resolving these features using a new high-resolution positron beam will be discussed.

1Work supported by NSF grant PHY-1401794.