Abstract Submitted
for the DAMOP17 Meeting of
The American Physical Society

Generation of atomic spin squeezed states in nanophotonic waveguides using QND measurement XIAODONG QI1, University of New Mexico, JONGMIN LEE, YUAN-YU JAU, Sandia National Labs, IVAN DEUTSCH, University of New Mexico — Nanophotonic waveguides strongly enhance the entangling strength of the atom-light interface. We study their application to the generation of spin squeezed states of trapped ultracold cesium atoms in two geometries — cylindrical optical nanofibers and square waveguides. We consider two different protocols — squeezing the clock transition by the birefringence coupling and squeezing a spin coherent state via the Faraday interaction. We unify our analysis based on a universal parameter — the optical depth per atom. In calculating the spin squeezing parameter, we have established a set of stochastic master equations to describe the individual and collective spin dynamics. Our simulation shows that \textasciitilde 10 dB of spin squeezing may be achievable with a few thousands of atoms on these nanophotonic waveguides. Our result can be generalized to other nanophotonic platforms, for implementing non-Gaussian states, and to improve quantum sensing precision using spin squeezing techniques.

1Center for Quantum Information and Control

Xiaodong Qi
Univ of New Mexico

Date submitted: 02 Feb 2017

Electronic form version 1.4