Abstract Submitted for the DAMOP17 Meeting of The American Physical Society

Progress towards long-range Rydberg molecules with ⁸⁷Sr¹ ROGER DING, JOSEPH WHALEN, FRANCISCO CAMARGO, F. BARRY DUNNING, THOMAS KILLIAN, Rice University — Many recent experiments have probed the interactions between highly-excited Rydberg atoms and nearby ground state atoms, allowing the study of a wide range of phenomena such as few-body, long-range Rydberg molecules in thermal gases^{2,3} (~ 10¹³cm⁻³) and many-body effects in Bose-Einstein condensates⁴ (~ 10¹⁴cm⁻³). These experiments have exclusively been performed with bosons. We report our results working with the fermionic isotope ⁸⁷Sr (I = 9/2) with which one can hope to see modified molecular structure and suppression of short-range collisional loss due to the Pauli exclusion principle. We will describe the spectra for two-photon excitation to the $5sns^{3}S1Rydbergstatefromaspin$ *polarizedsampleandourprogresstowardsobtainingRydbergmolecularspectra*.

¹Research supported by the AFOSR, the NSF, and the Robert A. Welch Foundation.
²V. Bendkowsky *et al.*, Nature (London) **458**, 1005 (2008).
³B. J. DeSalvo *et al.*, Phys. Rev. A **92**, 031403 (2015).

⁴M. Schlagmller *et al.*, Phys. Rev. Lett. **116**, 053001 (2016).

Roger Ding Rice University

Date submitted: 28 Jan 2017

Electronic form version 1.4