Progress toward simultaneous sub-Doppler cooling of 6Li and 7Li using a single laser frequency

YANPING CAI, DANIEL ALLMAN, KEVIN WRIGHT, Dartmouth College — We have built an experimental system for simultaneous cooling and trapping of 6Li and 7Li. The cold atomic beam originates from a dual-species 2D MOT with angled effusive sources. Atoms from the 2D MOT are captured in a 3D MOT, and must undergo further cooling for effective loading into a crossed-beam dipole trap. Standard sub-Doppler cooling techniques cannot be used with lithium, however, a Sisyphus cooling technique was recently demonstrated with 7Li [1] that uses a single laser frequency at relatively large detuning (several GHz) from the D lines. We have applied this cooling technique to 6Li, and measured the cooling efficiency as a function of different parameters including power, detuning, and beam geometry. Because the isotope shift for lithium is only 10 GHz, it should be possible to perform Sisyphus cooling on both isotopes simultaneously with a single laser frequency. We will report on progress toward achieving that goal.