Bound and Quasibound States of the Negative Ion of Lanthanum (La−) Studied by Photodetachment Spectroscopy1 C.W. WALTER, N.D. GIBSON, N.B. LYMAN, J. WANG, Denison University, Granville, OH — The negative ion of lanthanum, La−, has the richest bound state spectrum ever observed for an atomic negative ion \cite{1}, and it has been proposed as perhaps the best candidate for laser cooling of a negative ion \cite{2,3}. In the present experiments, La− is investigated using tunable infrared spectroscopy. The relative signal for neutral atom production was measured with a crossed ion-beam–laser-beam apparatus over the photon energy range 520-900 meV to probe the continuum region above the La neutral atom ground state. The spectrum shows multiple resonance peaks due to transitions to quasibound excited states of La− which subsequently autodetach. In addition, photodetachment thresholds are observed to excited states of La. The measured spectrum is consistent with the recently reported revised electron affinity for lanthanum \cite{4}.

1This material is based on work supported by the National Science Foundation under Grant Nos. 1068308 and 1404109.

C. Wesley Walter
Denison University, Granville, OH

Date submitted: 29 Jan 2017

Electronic form version 1.4