Abstract Submitted
for the DAMOP17 Meeting of
The American Physical Society

A sensitive electrometer based on a Rydberg atom in a Schrödinger-cat state1 SEBASTIEN GLEYZES, ADRIEN FACON, EVA-KATHARINA DIETSCH, ARTHUR LARROUY, DORIAN GROSSO, SERGE HAROCHE, JEAN-MICHEL RAIMOND, MICHEL BRUNE, Laboratoire Kastler Brossel, College de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11, place Marcelin Berthelot, Paris, FR — Metrology experiments based on the measurement of small rotation of a large angular momentum are limited by the projection noise. When the measurement is performed using classical states, the precision cannot exceed the standard quantum limit (SQL), that scales like \(1/\sqrt{J}\). To beat the SQL, one needs to make use of non-classical states. Our system is a Rydberg atom with a large quantum principal number \(n \sim 50\). In the presence of a small electric field, the degeneracy between levels with the same \(n\) is lifted. Then, using a radio frequency field with a well-defined polarization, it is possible to restrict the evolution of the atom to a subspace of the Rydberg manifold where the system behaves like a large spin \(J = (n - 1)/2\), whose frequency is proportional to the local amplitude of the electric field. We have used this effective spin to perform a quantum-enabled measurement of the static electric field [1]. We prepare a Schrödinger cat state of the Rydberg atom, and observe how the quantum phase of the cat provides a very sensitive signal to measure the variation of the static electric field allowing us to go beyond the SQL.

We acknowledge funding from the EU projects DECLIC and RYSQ

1We acknowledge funding from the EU projects DECLIC and RYSQ

Sebastien Gleyzes
College de France, CNRS, ENS-PSL Res., Univ., UPMC-Sorbonne

Date submitted: 06 Feb 2017

Electronic form version 1.4