Observation and analysis of high-lying singlet gerade states of rubidium dimer PHILLIP ARNDT, XINHUA PAN, DAVID BEECHER, MARJATTA LYYRA, ERGIN AHMED, Temple University — The structure of the excited electronic states of Rubidium dimer is important to a number of areas of research including, the production of ultracold ground state molecules, cold atom-molecule collisions, and the development of new ab-initio molecular electronic structure methods. In the experiment we used optical double resonance technique to observe large number of ro-vibrational levels of the $5^{1}\Sigma_g^+, 6^{1}\Sigma_g^+$, and $3^{1}\Pi_g$ electronic states in the 24000-26000 cm$^{-1}$ range. The Rb$_2$ molecules were initially excited from the ground $X^{1}\Sigma_g^+$ state to an intermediate level of the mixed $A^{1}\Sigma_u^+ ~b^{3}\Pi_u$ manifold using a narrow band tunable TiSa laser. In the next step the probe laser, a narrow band dye laser tunable in the 13000-14000cm$^{-1}$ range, excited the molecules further to the target states. The resonances of the probe laser were observed by detecting the total fluorescence from the excited states to the $a^{3}\Sigma_u^+$ state in the 500nm range. Potential energy curve was constructed for each state from the term values of the observed levels.

Date submitted: 29 Jan 2017