Feasibility of hollow core fiber based optical lattice clock

EKATERINA ILINOVA, University of Nevada, Reno, NV 89557 USA, JAMES F. BABB, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 14, Cambridge, Massachusetts 02138, USA, ANDREI DEREVIANKO, University of Nevada, Reno, NV 89557 USA, THEORETICAL ATOMIC AND MOLECULAR PHYSICS GROUP TEAM1, ATOMIC AND MOLECULAR PHYSICS DIVISION TEAM2

The possibility of building the optical lattice clock based on the narrow \(^1S_0^3P_0\) transition in Hg and other alkaline-earth like atoms optically trapped inside the hollow core fiber has been studied. The general form of the long range atom-surface interaction potential at non-zero temperatures has been calculated for the hollow capillary geometry. The resulting \(^1S_0^3P_0\) transition frequency shift has been calculated for Sr and Hg atoms as a function of their position inside the capillary. Its dependence on the geometric parameters and optical properties of the capillary material has been analyzed. The resonant enhancement of the atom-surface interaction potential and radiative decay rate of the \(^3P_0\) state at certain parameters of the waveguide has been studied. For the silica capillary with inner radius \(R_{in} > 15\ \mu m\) and thickness \(d \sim 1\ \mu m\) the atom surface interaction induced \(^1S_0^3P_0\) transition frequency shift on the capillary axis can be suppressed down to the level \(\delta \nu/\nu < 10^{-18}\). The additional frequency shifts and atom loss from the optical trap due to the residual birefringence of the waveguide and collisions with the buffer gas molecules have been evaluated.

1University of Nevada, Reno
2Harvard-Smithsonian Center for Astrophysics