Continuous Production of Rovibronic Ground State RbCs Molecules via Short-Range Photoassociation to the \(B^1\Pi, c^3\Sigma^+, \text{ and } b^3\Pi \) states

TOSHIHIKO SHIMASAKI, Dept. of Physics, Yale Univ., USA, JIN-TAE KIM, Dept. of Photonic Eng., Chosun Univ., Korea, YUQI ZHU, DAVID DEMILLE, Dept. of Physics, Yale Univ., USA — Electronic states with strong singlet-triplet mixing can be useful for efficient direct molecule production in the rovibronic ground state via short-range photoassociation (PA). We have observed rovibronic levels of the strongly mixed \(B^1\Pi(\Omega =1), c^3\Sigma^+(\Omega = 0^- \text{ and } 1), \text{ and } b^3\Pi(\Omega = 0^-, 0^+, \text{ and } 1) \) states of \(^{85}\text{Rb}^{133}\text{Cs} \) in the energy range of 13950 -14200 cm\(^{-1} \) using short-range PA. For selected PA states, vibrational branching and rotational branching in the \(X^1\Sigma^+(v =0) \) state have been investigated using resonance-enhanced multiphoton ionization and depletion spectroscopy [1], respectively. Efficient production of the rovibronic ground state \(X^1\Sigma^+(v =0, \ J =0) \) has been observed for some of the PA states in this energy range. Molecule production rate up to \(\sim 1\times 10^4 \text{ molecules/s} \) into the rovibronic ground state has been achieved, which is a factor of 5 improvement compared to previously observed PA states [2]. [1] T. Shimasaki et al., Phys. Rev. A 91, 21401 (2015). [2] T. Shimasaki et al., ChemPhysChem 17, 3677 (2016).

Jin-Tae Kim
Dept. of Photonic Eng., Chosun Univ., Korea

Date submitted: 29 Jan 2017

Electronic form version 1.4