Computation of Electron Impact Ionization Cross sections of Iron Hydrogen Clusters – Relevance in Fusion Plasmas

UMANG PATEL, Gandhinagar Institute of Technology, K N JOSHIPURA, Retired Professor, S P University

— Plasma-wall interaction (PWI) is one of the key issues in nuclear fusion research. In nuclear fusion devices, such as the JET tokamak or the ITER, first-wall materials will be directly exposed to plasma components. Erosion of first-wall materials is a consequence of the impact of hydrogen and its isotopes as main constituents of the hot plasma. Besides the formation of gas-phase atomic species in various charge states, di- and polyatomic molecular species are expected to be formed via PWI processes. These compounds may profoundly disturb the fusion plasma, may lead to unfavorable re-deposition of materials and composites in other areas of the vessel. Interaction between atoms, molecules as well transport of impurities are of interest for modelling of fusion plasma. \(Q_{\text{ion}} \) by electron impact are such process also important in low temperature plasma processing, astrophysics etc. We reported electron impact \(Q_{\text{ion}} \) for iron hydrogen clusters, FeH\(_n\) (\(n = 1 \) to 10) from ionization threshold to 2000eV. A semi empirical approach called Complex Scattering Potential – Ionization Contribution (CSP-ic) has been employed for the reported calculation\(^1\). In context of fusion relevant species \(Q_{\text{ion}} \) were reported for beryllium and its hydrides, tungsten and its oxides and cluster of beryllium-tungsten by Huber \textit{et al}\(^2\). Iron hydrogen clusters are another such species whose \(Q_{\text{ion}} \) were calculated\(^2\) through DM and BEB formalisms, same has been compared with present calculations. \(^1\)U. R. Patel \textit{et al}, J. Chem. Phys, \textbf{140} (2014) 44302 \(^2\)S. E. Huber \textit{et al}, Eur. Phys. J. D. 70 (2016) 182

Umang Patel
Gandhinagar Institute of Technology

Date submitted: 03 Feb 2017

Electronic form version 1.4