Correlation Effects in the Quench-Induced Phase Separation Dynamics of a Two-Component Ultracold Quantum Gas1 SIMEON MIS-TAKIDIS, GARYFALLIA KATSIMIGA, University of Hamburg, PANAYOTIS KEVREKIDIS, University of Massachusetts, PETER SCHMELCHER, University of Hamburg, THEORY GROUP OF FUNDAMENTAL PROCESSES IN QUANTUM PHYSICS TEAM — We explore the quench dynamics of a binary Bose-Einstein condensate crossing the miscibility-immiscibility threshold and vice versa, both within and in particular beyond the mean-field approximation. Increasing the interspecies repulsion leads to the filamentation of the density of each component, involving shorter wavenumbers and longer spatial scales in the many-body approach. These filaments appear to be strongly correlated and exhibit domain-wall structures. Following the reverse quench process multiple dark-antidark solitary waves are spontaneously generated and subsequently found to decay in the many-body scenario. We simulate single-shot images to connect our findings to possible experimental realizations. Finally, quenches within the miscible and the immiscible regime are discussed.

1Deutsche Forschungsgemeinschaft (DFG) in the framework of the SFB 925 "Light induced dynamics and control of correlated quantum systems", NSF-PHY-1602994 and the Alexander von Humboldt Foundation.

Simeon Mistakidis
University of Hamburg

Date submitted: 10 Dec 2017

Electronic form version 1.4