Room-Temperature Photon-Number-Resolved Detection Using A Two-Mode Squeezer

ELISHA SIDDIQUI MATEKOLE, Louisiana State Univ - Baton Rouge, DEEPTI VAIDYANATHAN, Baton Rouge Magnet High School, KENJI WANG ARAI, Reed College, Oregon, RYAN T GLASSER, Department of Physics and Engineering, Tulane university, Louisiana, HWANG LEE, JONATHAN P DOWLING, Louisiana State Univ - Baton Rouge — We study the average intensity-intensity correlations signal at the output of a two-mode squeezing device with $|N\rangle\otimes|\alpha\rangle$ as the two input modes. We show that the input photon-number can be resolved from the average intensity-intensity correlations. In particular, we show jumps in the average intensity-intensity correlations signal as a function of input photon-number N. Therefore, we propose that such a device may be deployed as photon-number-resolving detector at room temperature with high efficiency.

1Air Force Office of Scientific Research, the Army Research Office, the Defense Advanced Research Projects Agency, the National Science Foundation, and the Northrop Grumman Corporation.

2my APS member ID does not contain my marital last name Matekole. I would like to include it hear as it appears on the published article I am presenting.