The existence of exotic bosons are hypothesized by a variety of theories proposed to solve the mysteries of dark matter, dark energy, the hierarchy problem, and the matter-antimatter asymmetry of the universe. Interactions mediated by such exotic bosons can be searched for in laboratory experiments by measuring spin-dependent energy shifts in atoms and molecules. We review our efforts to detect such exotic spin-dependent interactions, including a search for a monopole-dipole coupling between the mass of the Earth and rubidium nuclear spins [Jackson Kimball et al., Phys. Rev. D 96, 075004 (2017)] and searches for dipole-dipole couplings by analyzing helium fine-structure [Ficek et al., Phys. Rev. A 95, 032505 (2017)], studying J-coupling in deuterated molecular hydrogen [Ledbetter et al., Phys. Rev. Lett. 110, 040402 (2013)], and investigating the interaction between trapped strontium ions [Kotler et al., Phys. Rev. Lett. 115, 081801 (2015)].

1NSF grants PHY-1307507 and PHY-1707875; Simons and Heising-Simons Foundations.