Enhanced ground-Rydberg coherence times in a state-insensitive optical lattice1 JACOB LAMPEN, HUY NGUYEN, MATTHEW WINCHESTER, LIN LI, PAUL BERMAN, ALEX KUZMICH, University of Michigan — By confining Rb atoms in a state-insensitive optical lattice, the lifetime of the 5s-ns coherence is increased to $\sim 20 \, \mu s$, an order of magnitude improvement on prior demonstrations using untrapped atoms. The enhanced lifetimes open new opportunities for high-resolution spectroscopy and quantum information science. As the first demonstration of their utility, the magic values for lattice frequencies are measured and used to extract the 6p-ns reduced electric dipole matrix elements. Good agreement is found with values obtained by numerical integration for an effective one-electron potential for principal quantum numbers n between 30 and 65.

1We are supported by grants from the National Science Foundation, the US Air Force Office of Scientific Research, and the Center for Distributed Quantum Information of the US Army Research Laboratory

Matthew Winchester
University of Michigan