Toward All-Optical Loading of Co-Trapped Be$^+$ and O$_2^+$

ALEXANDER FRENETT, CHRISTIAN PLUCHAR, RYAN CAROLLO, DAVID HANNEKE, Amherst College — Trapped and sympathetically cooled O$_2^+$ ions are a promising system for precision measurements, optical frequency metrology, and searches for new physics. We describe our techniques to load O$_2^+$ along with Be$^+$ coolant ions through resonance-enhanced photoionization. For beryllium, a custom-designed monolithic doubling cavity generates 235 nm light for single-color 1 + 1 ionization on the $^1S_0 \rightarrow ^1P_1$ transition. In O$_2$, a cold molecular beam is photoionized via single-color 2+1 REMPI on the $X^3\Sigma_g^- \rightarrow d^1\Pi_g \rightarrow X^2\Pi_g(O_2^+)$ transition. This transition is vibrationally selective and loads ions in a small number of rotational states. We describe initial work conducting spectroscopy of the molecular transition and plans for integrating the cold beam into our trap.

1This work is supported by the NSF (CAREER PHY-1255170)