Abstract Submitted for the DAMOP18 Meeting of The American Physical Society

Measurement of the lifetime of the 7S1/2 state in atomic cesium using asynchronous gated detection¹ YAO DE GEORGE TOH, JOSE A. JARAMILLO-VILLEGAS, NATHAN GLOTZBACH, Purdue University, JONAH QUIRK, University of Southern Indiana, IAN C. STEVENSON, JUNGO CHOI, ANDREW M. WEINER, DANIEL S. ELLIOTT, Purdue University — Our group is making progress towards new parity violation measurements in cesium. Atomic lifetime measurements provide sensitive tests of theoretical models of the cesium atom, which play a central role in parity violation measurements. We report a measurement of the lifetime of the cesium $7s^2 S_{1/2}$ state using time-correlated single photon counting spectroscopy. We excite the atoms using a Doppler-free two-photon transition from the ground state, and detect the 1.47 μm photons from spontaneous decay. We introduce an asynchronous detection technique using gated single photon detectors, allowing us to capture the fluorescence profile for a time window much larger than the detector gate length.

¹We acknowledge support from the National Science Foundation under Grant Number PHY-1607603 and PHY-1460899.

Yao De George Toh Purdue University

Date submitted: 25 Jan 2018

Electronic form version 1.4