Strong-field laser induced H₂ roaming reactions and the formation of H₃⁺ from organic molecules

N. EKANAYAKE, M. NAIRAT, Chemistry Department, Michigan State University, USA, T. SEVERT, P. FEIZOLLAH, B. JOCHIM, B. KADERIYA, F. ZIAEE, K. BORNE, KANAKA RAJU P., K. D. CARNES, D. ROLLES, A. RUDENKO, I. BEN-ITZHAK, J. R. Macdonald Laboratory, Kansas State University, USA, N. P. WEINGARTZ, B. M. FARRIS, J. E. JACKSON, B. G. LEVINE, M. DANTUS, Chemistry Department, Michigan State University, USA — Roaming chemical reactions are a novel chapter in our understanding of certain exotic reactions relevant to molecular physics, photochemistry, and combustion chemistry. A recent finding indicating the involvement of H₂ roaming for the formation of H₃⁺ under strong-field photodissociation [Ekanayake, N. et al. Sci. Rep. 7, 4703 (2017)] inspired a series of experiments aimed at elucidating aspects of its mechanisms of formation. In the present study, site-specific details and femtosecond time-resolved dynamics of H₃⁺ formation were obtained through a combination of strong-field laser excitation studies and ab initio calculations on a series of alcohols. Our findings confirm the mechanisms of this intriguing chemical process involving the cleavage and formation of three chemical bonds and reveal that H₃⁺ yields decrease as the alkane chain length increases. This new understanding will aid in the prediction of expected yields and formation times of H₃⁺ from different organic molecules.

1Supported by the U.S. Department of Energy under grants DOE SISGR (DE-SC0002325) and DE-FG02-86ER13491.