Ultracold collisions of spin-polarized SrF(2Σ+) molecules with Rb(2S) atoms in an external magnetic field

MASATO MORITA, Univ of Nevada - Reno, MACIEJ B. KOSICKI, PIOTR S. ŻUCHOWSKI, Nicolaus Copernicus University, Torun, Poland, TIMUR V. TSCHERBUL, Univ of Nevada - Reno

Recent advances in molecular laser cooling have enabled the production of cold, trapped SrF(2Σ+) and CaF(2Σ+) radicals at sub-milliKelvin temperatures. To explore the feasibility of sympathetic cooling of SrF radicals using ultracold Rb atoms in a magnetic trap, we carry out accurate ab initio and quantum scattering calculations of ultracold Rb-SrF collisions. In spite of the significant anisotropy in the interaction potential between Rb and SrF, we find that fully converged scattering calculations on Rb-SrF collisions are possible using a total angular momentum basis including up to 125 rotational states of SrF and up to 3 total angular momentum blocks. We examine the sensitivity of the scattering cross sections to small variations of the interaction potential and use a statistical approach to estimate the success probability of atom-molecule sympathetic cooling.

1This work was supported by NSF Grant No. PHY-1607610.

Masato Morita
Univ of Nevada - Reno

Date submitted: 05 Feb 2018

Electronic form version 1.4