Chirp control of the formation of excited neutral D fragments in intense ultrafast laser pulses

PEYMAN FEIZOLLAH, BEN BERRY, T. SEVERT, BETHANY JOCHIM, M. ZOHRABI, KANAKA RAJU P., K.D. CARNES, B.D. ESRY, I. BEN-ITZHAK, J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, KS 66506 USA — Excited neutral D fragments \((n \geq 2)\) are formed by the interaction of intense laser pulses with \(D_2\) molecules [1]. One of the suggested interpretations of this process is that one (or both) of the electrons that were ejected recombine with the parent ion(s) and form the excited neutral fragment(s) [1]. In the present study, 400 nm laser pulses were used, and a single-prism pulse compressor [2] was implemented, which allows the generation of both positively- and negatively-chirped laser pulses. The kinetic energy release spectrum of neutral D fragments is observed to be extremely sensitive to the laser parameters. In particular, we report control of this spectrum using the chirp of the laser pulses.


1Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy under Award # DE-FG02-86ER13491.