Femtosecond Time-Resolved Coulomb Explosion Imaging of UV-Induced Photodissociation of Iodomethane

F. ZIAEE, K. BORNE, KANKA RAJU P., B. KADERIYA, Y. MALAKAR, T. SEVERT, I. BEN-ITZHAK, A. RUDENSICO, D. ROLLES, Department of Physics, Kansas State University, Manhattan KS, USA, R. FORBES, University College London, University of Ottawa — The UV-induced photodissociation of iodomethane (CH3I) and the ensuing molecular dynamics is investigated by time-resolved Coulomb explosion imaging. We utilize a UV-IR pump-probe setup with a coincident 3D ion momentum imaging apparatus to measure yields and kinetic energies of all ionic fragments as a function of the time-delay between the pump and probe pulses. Excitation at a wavelength of 258 nm initiates a resonant one photon dissociation into neutral fragments, which results in C-I bond cleavage. The dissociation products are then strong-field ionized, using the IR probe pulse. Analysis of the delay-dependent kinetic energy release, for each fragmentation channel, allows the time evolution of the internuclear distance to be extracted. The results highlight the sensitivity of Coulomb explosion imaging as a probe of structural dynamics on ultrafast timescales.

1This project is supported by the Chemical Science, Geosciences, and Bio-Science division, Office of Basic Energy Science, Office of Science, U.S. Department of Energy. K.R.P. thanks NSF-EPSCOR for their support.