Comparison of Two Sr Optical Lattice Clocks with $10^{-17}/\sqrt{\tau}$ Level Stability

ERIC OELKER, LINDSAY SONDERHOUSE, TOBIAS BOTHWELL, ROSS HUDSON, COLIN KENNEDY, EDWARD MARTI, DHRUV KEDAR, AKIHISA GOBAN, SARAH BROMLEY, SARA CAMPBELL, JOHN ROBINSON, WILLIAM MILNER, SHIMON KOLKOWITZ, CHRISTIAN SANNER, JILA-University of Colorado, DAN MATAI, THOMAS LEGERO, FRITZ RIEHLE, UWE STERR, Physikalisch-Technische Bundesanstalt (PTB), JUN YE, JILA-University of Colorado, JILA-UNIVERSITY OF COLORADO TEAM, PHYSIKALISCH-TECHNISCHE BUNDESANSTALT (PTB) TEAM — I report on the use of a state-of-the-art ultrastable laser to improve the stability of the JILA 1D and 3D ^{87}Sr lattice clocks. The ultrastable laser system utilizes a cryogenic Silicon reference cavity with a thermal noise limited instability of 4×10^{-17}. By performing an asynchronous comparison between the two systems along with a self comparison of each clock individually we are able to rigorously determine the stability of both clocks. We infer a clock stability at the mid-$10^{-17}/\sqrt{\tau}$ level for our 1D system and high-$10^{-17}/\sqrt{\tau}$ level for our 3D system due to dead time associated with sample preparation. The 1D result represents a new record for a clock based on a single atomic ensemble.