Velocity selective optical pumping effects in electromagnetically induced absorption for ^{85}Rb atoms: polarization dependences1

HEUNG-RYOUL NOH, HA-EUN HONG, Chonnam National University, ZEESHAN JADOON, JIN-TAE KIM, Chosun University — We present experimental and theoretical studies on velocity selective optical pumping effects on electromagnetically induced absorption for the $F_g = 3 \rightarrow F_e = 2,3,$ and 4 transitions of ^{85}Rb atoms. Probe transmittance spectra are investigated by scanning the coupling laser frequency from the $F_g = 3 \rightarrow F_e = 2,3,$ and 4 transitions with a weak probe laser resonant to the $F_g = 3 \rightarrow F_e = 4$ transition of ^{85}Rb atoms. We consider laser linewidth, atomic thermal velocity distributions, frequency mixings of coupling and probe beams due to degenerate magnetic sublevels, and various polarization configurations of the coupling beam with a probe beam fixed at σ^+ polarization in the simulation of the spectra. We find good agreement between the calculated and observed transmittance spectra for each coupling laser polarization configuration.

1This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT and future Planning(2017R1A2B4003483).