Abstract Submitted for the DAMOP18 Meeting of The American Physical Society

Numerical studies of a Matter-Wave Open Quantum System¹ MICHAEL STEWART, LUDWIG KRINNER, ARTURO PAZMINO, JOONHYUK KWON, DOMINIK SCHNEBLE, Stony Brook University — In a recent experiment ², we implement a model for an open quantum system consisting of an array of Weisskopf-Wigner type emitters ("artificial atoms") realized with ultracold atoms in an optical lattice geometry ³. Each emitter can spontaneously emit matter waves, with fully tunable decay strength and excited state energy. In a recent theoretical analysis ⁴, we studied a single site coupled to a one-dimensional waveguide and analyzed the transition from Markovian to non-Markovian dynamics including the formation of a bound state. In the experiment, we found strong qualitative deviations of the data compared to the single site analytical treatment. We present numerical studies on the effect of neighboring ground-state emitters, which suggest that the observed differences can be explained in terms of resonant re-absorption of emitted matter waves, such as tunneling and diffusion. We also propose schemes for direct characterization of transport properties in the lattice.

¹This work is supported by the National Science Foundation, grant No. PHY-1607633.

²L. Krinner, arxiv 1712.07791

³I. de Vega et. al, Phys. Rev. Lett. **101**, 260404, 2008

⁴M. Stewart et. al, Phys. Rev. A **95**, 013626, 2017

Michael Stewart Stony Brook University

Date submitted: 26 Jan 2018

Electronic form version 1.4