Quantum dynamics of coupled spin defects in diamond
CHONG ZU, FRANCISCO MACHADO, BRYCE KOBRIN, THOMAS MITTIGA, SATCHER HSIEH, PRABUDHYA BHATTACHARYYA, Department of Physics, University of California Berkeley, Berkeley, CA 94720, U.S.A., SOONWON CHOI, Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA, NORMAN YAO, Department of Physics, University of California Berkeley, Berkeley, CA 94720, U.S.A. — Understanding and controlling the dynamics of disordered, strongly interacting spin systems remain an outstanding challenges. Here, we demonstrate that in Type Ib diamond, the mixed electronic spin system associated with P1 centers (nitrogen defects) and nitrogen-vacancy (NV) centers provides a natural playground to explore non-equilibrium quantum dynamics. The typical NV-P1 spacing can be as small as a few nanometers, resulting in strong magnetic dipole-dipole interactions between spins. By tuning an external magnetic field, one can vary the effective coupling strength between individual NV centers and nearby P1 centers, enabling the direct extraction of P1 density. Moreover, leveraging the NV center as an entropy sink, we initialize the spin state of nearby P1 centers and observe the resulting out-of-equilibrium quantum dynamics and spin diffusion.

Chong Zu
University of California, Berkeley

Date submitted: 26 Jan 2018

Electronic form version 1.4