Abstract Submitted for the DAMOP18 Meeting of The American Physical Society

Comparisons of single-ion Yb⁺ and Cs fountain clocks for searches for new physics¹ NILS HUNTEMANN, CHRISTIAN SANNER, RICHARD LANGE, BURGHARD LIPPHARDT, JOHANNES M. RAHM, STEFAN WEY-ERS, CHRISTIAN TAMM, EKKEHARD PEIK, Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany — We employ two singleion Yb⁺ optical clocks that use the ${}^{2}S_{1/2} \rightarrow {}^{2}F_{7/2}$ electric octupole (E3) transition as the reference. Because of their 3×10^{-18} uncertainty and the strong sensitivity of the transition frequency on the fine structure constant α , comparisons with other atomic clocks enable improvements in searches for temporal variations of α . A particularly suitable transition for such a comparison is the ${}^{2}S_{1/2} \rightarrow {}^{2}D_{3/2}$ electric quadrupole transition of the same ion, that we regularly use to test frequency shifts of the E3 transition induced by residual fields on a magnified scale. Besides investigations for variations of α , long-term comparisons between the Yb⁺ and Cs fountain clocks, with their frequency being sensitive to the proton-to-electron mass ratio μ , allow us to improve present limits on the temporal variation of μ and use the data for searches for ultralight scalar dark matter.

¹This project has received funding under 15SIB03-OC18 from the EMPIR programme cofinanced by the Participating States and from the European Unions Horizon 2020 research and innovation programme.

> Nils Huntemann Physikalisch-Technische Bundesanstalt (PTB)

Date submitted: 26 Jan 2018

Electronic form version 1.4