Two-photon transitions in cold caesium atoms confined in a hollow-core optical fiber

TAHYUN YOON, ZHENGDAO DING, FERESHTEH RAJABI, BRIAN DUONG, CAMERON VICKERS, JEREMY FLANNERY, RUBAYET AL MARUF, MICHAL BAJCSY, IQC, Univ of Waterloo — We present the results of our experimental studies of cascade and lambda-type two-photon transitions in laser-cooled caesium atoms loaded inside a hollow-core photonic-crystal fibre. We investigate the enhancements of the two-photon processes by the tight confinement of the propagating light and from the slow-light effects arising in the optically thick atomic ensemble. We also explore the applications of these transitions for all-optical switching, cross-phase modulation, and light storage.

1This work was supported by Industry Canada, NSERC’s Discovery grant, and Ontario’s Early Researcher Award

Michal Bajcsy
IQC, Univ of Waterloo

Date submitted: 26 Jan 2018