Abstract Submitted for the DAMOP18 Meeting of The American Physical Society

Interference between two resonant transitions with distinct initial and final states connected by radiative decay¹ ERIC A. HESSELS, MARKO HORBATSCH, ALAIN MARSMAN, York University — The resonant line shape from driving a transition between two states, $|a\rangle$ and $|b\rangle$, can be distorted due to a quantum-mechanical interference effect involving a resonance between two different states, $|c\rangle$ and $|d\rangle$, if $|c\rangle$ has a decay path to $|a\rangle$ and $|d\rangle$ has a decay path to $|b\rangle$. This interference can cause a shift of the measured resonance, despite the fact that the two resonances do not have a common initial or final state. As an example, we demonstrate that such a shift affects measurements of the atomic hydrogen $2S_{1/2}$ -to- $2P_{1/2}$ Lamb-shift transition due to 3S-to-3P transitions if the $3S_{1/2}$ state has some initial population. Link: https://doi.org/10.1103/PhysRevA.96.062111

¹This work is supported by NSERC and CRC and used SHARCNET for computation.

Alain Marsman York University

Date submitted: 26 Jan 2018

Electronic form version 1.4