Cubic Nonlinearity of WS₂ Nanoflakes

TIKARAM NEUPANE, DULITHA JAYAKODIGE, BAGHER TABIBI, FELIX JAETAE SEO, Hampton University, HAMPTON UNIVERSITY TEAM — The cubic nonlinearity of tungsten disulfide atomic layers is of great interest for optical power limiting and saturable Q-switching. The nonlinear optical properties of tungsten disulfide nanoflakes in aqueous solution was characterized with Z-scan technique with resonant at 532 nm with 6 ns pulse width and 10 Hz repetition rate. The absorption spectrum of WS₂ nanoflake mixtures of one to four atomic layers in aqueous solution shows the characteristic A, B, and C peaks. The A and B absorption bands are due to the large band spitting of conduction band with strong coupling between electron spin and d-electron orbital coupling, and the C band is due to the band nesting by the singularity of joint density of state. The nonlinear absorption and nonlinear refraction coefficients of WS₂ nanoflakes were estimated to be \(~6.2 \times 10^{14}\) cm/GW with open Z-scan, and \(~-0.9 \times 10^{-10}\) cm²/W with closed Z-scan. Acknowledgment: This work is supported by ARO W911NF-15-1-0535, NSF HRD-1137747, and NASA NNX15AQ03A.

Felix Jaetae Seo
Hampton University

Date submitted: 06 Feb 2018

Electronic form version 1.4