Abstract Submitted for the DAMOP18 Meeting of The American Physical Society

¹³³Ba⁺: A radioactive trapped ion qubit¹ JUSTIN E. CHRIS-TENSEN, DAVID HUCUL, ERIC R. HUDSON, WESLEY C. CAMPBELL, Univ of California - Los Angeles — $^{133}Ba^+$ has been identified as an attractive trapped ion qubit due to its unique combination of spin-1/2 nucleus, visible-wavelength electronic transitions, and the longest ${}^{2}D_{5/2}$ lifetime of any alkaline-earth-like atomic ion. This nearly ideal system hosts hyperfine and optical qubit clock-states (long coherence times), enables fast high fidelity state preparation, and allows high fidelity readout via state selective electron shelving or direct optical qubit manipulation. Due to the 10.5yr half-life and unknown spectroscopic features required for laser cooling and qubit manipulations, ${}^{133}Ba^+$ had not been previously used as a host for quantum information. By using efficient loading and in-situ laser heating for isotopic purification, we can trap and laser cool a single ${}^{133}Ba^+$. We present recent work with $^{133}Ba^+$, including hyperfine qubit manipulations, the first demonstration of state selective electron shelving in ${}^{133}Ba^+$, and new spectroscopic measurements of the ${}^{2}P_{3/2}$ states. These measurements, along with continued efforts, will allow this optimal trapped ion qubit to be implemented across a wide range of current and future quantum information experiments.

¹US Army Research grant: W911NF-15-1-0273 W11NF-18-1-0097

Justin Christensen Univ of California - Los Angeles

Date submitted: 26 Jan 2018

Electronic form version 1.4