Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Ultrafast Electronic Relaxation Dynamics of Ionized Liquid Water¹ ZHI-HENG LOH, PEI JIANG LOW, ZHAOGANG NIE, Nanyang Technological University — The ionization of liquid water serves as the principal trigger for a myriad of phenomena that are relevant to radiation chemistry and radiation biology. The earliest events that follow the ionization of liquid water, however, remain relatively unknown. We have embarked on a series of studies to investigate the ultrafast dynamics of intense laser-ionized liquid water. Optical pump-probe spectroscopy employing few-cycle pulses in the visible (500–700 nm) and short-wave infrared $(0.9-1.7 \ \mu m)$ is used to reveal the fate of the electron that is initially injected into the conduction band by ionization. These experiments yield the lifetime of the conduction-band electron and the timescale for vibrational cooling of the s electron. Remarkably, our results suggest that the relaxation of the conduction band electron to the hydrated s electron proceeds via an intermediate state — possibly the elusive p state electron — whose lifetime is found to be 63 ± 3 fs (94 ± 8 fs) in H₂O (D₂O). These results provide a comprehensive view of the electronic relaxation dynamics of ionized liquid water.

¹We acknowledge support from the Ministry of Education Academic Research Fund (MOE2014-T2-2-052 and RG105/17).

Zhi-Heng Loh Nanyang Technological University

Date submitted: 18 Jan 2019

Electronic form version 1.4