Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Using Rydberg atoms to increase electron coupling strength in ultracold neutral plasmas¹ DUNCAN TATE, YIN LI, ETHAN CROCKETT, RYAN NEWELL, Colby College — We have experimentally demonstrated heating and cooling of electrons in an ultracold neutral plasma (UNP) with an initial electron temperature $T_{e,i}$ (determined by the frequency of the ionizing laser) by embedding Rydberg atoms in them in the first 20 ns of their evolution 2 . We have quantified the crossover initial electron temperature, $T_{e,i} = T_{CO}$, for a plasma that is neither heated nor cooled when N_R Rydberg atoms with binding energy E_b are added to a plasma with initial ion number N_{ion} . This condition is $k_B T_{CO} \approx 2.7 \times |E_b|$ when $N_R \approx 0.2 \times N_{ion}$. Additionally, we have measured the change in the plasma expansion velocity when E_b does not satisfy the crossover condition for a range of N_R/N_{ion} values. These results are in good agreement with Monte-Carlo calculations. We are also pursuing similar studies, both experimental and numerical, in the regime where $N_R \gg N_{ion}$ to see if the plasma electrons can be cooled sufficiently to increase their coupling to $\Gamma_e \sim 0.5$ in the first 5 μ s of plasma evolution, as predicted by by Pohl et al. 3 .

¹Research supported by Colby College and NSF.
²Crockett et al., Phys. Rev. A, 98, 043431 (2018)
³T. Pohl et al., Eur. Phys. J. D, 40, 45 (2006)

Duncan Tate Colby College

Date submitted: 26 Jan 2019

Electronic form version 1.4