An optical clock platform with strontium atoms in tweezers
MATTHEW NORCIA, AARON YOUNG, WILLIAM ECKNER, BENJAMIN
JOHNSTON, ADAM KAUFMAN, JILA, NIST, University of Colorado at Boulder
— Arrays of strontium atoms trapped within optical tweezers provide an intriguing
new platform for optical frequency metrology, with a unique combination of ap-
pealing features including relatively large particle numbers, absence of interatomic
collisions, long coherence times, and low dead times through repeated lossless imag-
ing. Further, if Rydberg interactions were introduced between the tweezer-trapped
atoms, the microscopic control afforded by this system may enable entanglement-
enhanced performance. Here, we demonstrate highly coherent excitation of the ultra
narrow 1S_0 to 3P_0 clock transition in arrays of tweezer-trapped 88Sr atoms, as well
as repeated interrogation of the same ensemble of atoms using high-fidelity, low loss
measurements. These results provide the key ingredients for a new form of highly
capable optical clocks.