Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Calculations of long-range three-body interactions for $\text{Li}(2^2S)$ - $\text{Li}(2^2S)$ - $\text{Li}(1^1S)^1$ PEI-GEN YAN, U. New Brunswick, LI-YAN TANG, WIPM, ZONG-CHAO YAN, U. New Brunswick WIPM, JAMES F BABB, ITAMP, Harvard-Smithsonian CfA — Using perturbation theory for energies, we evaluate the additive and nonadditive interaction coefficients C_4 , C_6 , C_7 , C_8 and C_9 for the $\text{Li}(2^2S)$ - $\text{Li}(2^2S)$ - $\text{Li}^+(1^1S)$ system. The obtained coefficients C_n are evaluated with highly accurate variationally-generated nonrelativistic wave functions in Hylleraas coordinates. The nonadditive interaction coefficients depend on the geometrical configurations of this three-body system and on the different positions of the ion for each configuration. Our calculations may be of interest for the study of three-body recombination and for constructing precise potential energy surfaces.

¹Work supported in part by NSERC, CAS/SAFEA, NBRPC, NNSF, and NSF

Pei-Gen Yan University of New Brunswick

Date submitted: 26 Jan 2019

Electronic form version 1.4