Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Collisional EPR Frequency Shifts in Cs-Rb-Xe Mixtures¹ SHENG ZOU, CHAMITHRI ADIKARIGE, ZAHRA ARMANFARD, TREVOR FOOTE, DAVID P. MORIN, BRIAN SAAM, Washington State University — Spin-exchange optical pumping (SEOP) generates large non-thermal nuclear polarizations in certain non-zero-spin noble gases. The collisionally modulated Fermi-contact hyperfine interaction between the alkali-metal valence electron and the noble-gas nucleus is crucial to SEOP physics, which is incompletely understood, especially for heavy noble gases like Xe. One current question is whether Rb, Cs, or a mixture of the two is ideal for SEOP of ¹²⁹Xe. The magnetization of hyperpolarized ¹²⁹Xe generates a frequency shift in the alkali-metal EPR hyperfine spectrum that is directly proportional to the electron-wavefunction overlap characterized by the enhancement factor κ_0 [1]. We performed near-simultaneous measurements of the ⁸⁷Rb and ¹³³Cs EPR shifts caused by sudden destruction of ¹²⁹Xe hyperpolarization in a "hybrid Rb-Cs SEOP vapor cell. Our preliminary result for the shift ratio is about 1.5 to 1.6 at 110 °C, suggesting that $(\kappa_0)_{CsXe}$ is about 25% to 35% larger than $(\kappa_0)_{RbXe}$; the latter has been previously measured to be 493 ± 31 [2]. [1] S.R. Schaefer, et al., Phys Rev. A 39, 5613 (1989). [2] Z.L. Ma, et al., Phys. Rev. Lett. 106, 193005 (2011).

 1 NSF Grant no. PHY-1708048

Brian Saam Washington State University

Date submitted: 03 Feb 2019

Electronic form version 1.4