Resonant final-state effects in time-resolved photoemission spectra from Ni(111) surfaces.¹ MARCELO AMBROSIO, UWE THUMM, Kansas State University — Measured time-resolved interferometric (RABBITT) photoelectron spectra from Ni(111) surfaces recently indicated a final-state-induced increase in the photoemission time delays at distinct photoelectron kinetic energies [1]. Motivated to examine and understand these final-state shape resonances, we calculated time-resolved spectra and relative RABBITT phases from the Λ3β and Λ3α bands of Ni(111) for the XUV-pulse-train and IR-pulse parameters of Ref. [1]. Modeling the photoelectron final-state wavefunction subject to an oscillatory model potential [2] and the IR laser field, we trace the resonantly increased photoemission time delay to an electron-probability-density accumulation inside the substrate which occurs when the local electronic de Broglie wavelength matches the substrate lattice spacing [3].


¹Supported by the NSF and the Division of Chemical Sciences, Office of the Basic Energy Sciences, Office of Energy Research, US DoE.