DAMOP19-2019-000245

Abstract for an Invited Paper for the DAMOP19 Meeting of the American Physical Society

Quantum Optics with Ultracold Fermions

PHILIPP PREISS, Heidelberg University

Control over individual particles has recently enabled the observation of quantum optics phenomena in ultracold atom experiments. In this talk, I will show how to realize entangled-pair sources of massive particles. Using optical tweezers, we implement deterministic sources of lithium atoms in a setting where spins and momenta of individual particles can be detected via free-space fluorescence imaging. In contrast to all photonic implementations, the source operates on fermionic particles, allowing us to explore coherence, many-body interference, and entanglement in a system with negative exchange symmetry. We verify the indistinguishability of the particles through Hanbury Brown-Twiss experiments, in which we detect high-contrast second-order interference and strong correlations at third order. Switching on interactions between the particles, we obtain maximally entangled pairs, which may be used to probe the violation of a CHSH inequality in the experiment. In the future, our techniques may help to measure coherence properties of small atomic clusters and order parameters of fermionic superfluids.