Abstract Submitted for the DAMOP19 Meeting of The American Physical Society

Enhancedspincoherenceof rubidium atoms in solid parahydrogen¹ SUNIL UPADHYAY, UGNE DAR-
GYTE, ROBERT PRATER, VSEVOLOD DERGACHEV, SERGEY VARGANOV,
TIMUR TSCHERBUL, University of Nevada, Reno, DAVID PATTERSON, Univer-
sity of California, Santa Barbara, JONATHAN WEINSTEIN, University of Nevada,
Reno — Alkali atoms trapped in solid parahydrogen are optically addressable and
have excellent spin coherence properties. They retain these properties at high spin
densities, making them a promising platform for applications such as atomic mag-
netometry in the solid phase. We have identified the physical mechanism that limits
the ensemble T_2^* as electrostatic in nature, and are able to achieve significantly longer
 T_2^* times by using nonclassical spin superposition states. By contrast, we find the
spin-echo T_2 is limited by interactions that are magnetic in nature. Progress towards
identifying the source of this magnetic decoherence will be discussed.

 $^1\mathrm{This}$ material is based upon work supported by The National Science Foundation under Grant PHY 1607072

Sunil Upadhyay University of Nevada, Reno

Date submitted: 30 Jan 2019

Electronic form version 1.4