Abstract Submitted
for the DAMOP19 Meeting of
The American Physical Society

Enhanced spin coherence of rubidium atoms in solid parahydrogen
SUNIL UPADHYAY, UGNE DAR-GYTE, ROBERT PRATER, VSEVOLOD DERGACHEV, SERGEY VARGANOV, TIMUR TSCHERBUL, University of Nevada, Reno, DAVID PATTERSON, University of California, Santa Barbara, JONATHAN WEINSTEIN, University of Nevada, Reno — Alkali atoms trapped in solid parahydrogen are optically addressable and have excellent spin coherence properties. They retain these properties at high spin densities, making them a promising platform for applications such as atomic magnetometry in the solid phase. We have identified the physical mechanism that limits the ensemble T_2 as electrostatic in nature, and are able to achieve significantly longer T_2 times by using nonclassical spin superposition states. By contrast, we find the spin-echo T_2 is limited by interactions that are magnetic in nature. Progress towards identifying the source of this magnetic decoherence will be discussed.

1This material is based upon work supported by The National Science Foundation under Grant PHY 1607072