The building principle of triatomic trilobite Rydberg molecules

PETER SCHMELCHER, CHRISTIAN FEY, FREDERIC HUMMEL, University of Hamburg — We explore the properties of triatomic ultralong-range Rydberg molecules consisting of two ground state atoms and a highly excited Rydberg atom. Our focus is on molecular states for which the Rydberg electron is in a superposition of high angular momentum states whose probability densities resemble the form of trilobite fossils. The associated potential energy landscape has an oscillatory shape and supports a rich variety of stable geometries with different bond angles and bond lengths. Based on an electronic structure investigation we analyze the molecular geometry systematically and develop a simple building principle that predicts the triatomic equilibrium configurations. As a representative example we focus on ^{87}Rb trimers correlated to the $n = 30$ Rydberg state. Using an exact diagonalization scheme we determine and characterize localized vibrational states in these potential minima with energy spacings on the order of 100 MHz.

Financial support by the Deutsche Forschungsgemeinschaft via SPP1929 "Giant Interactions in Rydberg Systems" is acknowledged.