Progress Toward Building a Multiplexed Strontium Optical Lattice Clock

MEGAN TABBUTT, XIN ZHENG, BRETT MERRIMAN, KELSEY JACOBUS, SHIMON KOLKOWITZ, University of Wisconsin - Madison — Optical lattice clocks are amongst the most accurate and precise devices ever built. Their remarkable stability is now giving rise to a number of novel applications. In contrast to traditional optical lattice clocks, we propose to build a multiplexed Strontium optical lattice clock, which will enable high precision differential measurements between two ensembles of ultra-cold Strontium atoms confined in independently addressable lattices. In this poster, we will present on current progress in building an ultra-high vacuum chamber capable of reaching 10^{-11} Torr, building a two-stage magneto-optical trap for laser cooling to μK temperatures, and characterization of our atomic beam source. Updates on a Strontium spectroscopy cell used for laser stabilization will also be shared. In addition, we will discuss plans to use light-assisted collisions to eliminate the collisional line-broadening of the clock transition and to study the photo-association of 87Sr in a 1-D optical lattice. We also propose new methods for evaluating clock systematics, performing tests of relativity, and achieving quantum enhanced clocks via Rydberg interactions with our multiplexed clock apparatus.

Megan Tabbutt
University of Wisconsin - Madison

Date submitted: 31 Jan 2019